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ABSTRACT I

This paper presents a minimax method which gives existence and 4

multiplicity results for time periodic solutions of a class of Hamiltonian

systems when a singular potential is present. The singularity satisfies the

strong force condition of Gordon. When milder singularities are permitted a

notion of generalized T-periodic solution is introduced and we get existence

and multiplicity results for such solutions.
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-A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN
SYSTEMS WITH SINGULAR POTENTIALS

Abbas Bahri and Paul H. Rabinowitz"

S..Introduction

Recently there has been a considerable amount of work on the existence of

time periodic solutions of prescribed period for Hamiltonian systems of the

form

(HS) q + V'(q) = 0

- Here q = (q1,...,q,), n > 2, V : Rn\S + R, V and V' + 0 as JqJ + - and

V is singular on S, i.e. IV(q)J + - as q + S. The case where V

depends explicitly on t in a T-periodic fashion has also been treated. See

-.' e.g. Ambrosetti and Coti-Zelati [1-21, Coti-Zelati [3], Degiovanni, Giannoni,

*-. and Marino [4], Greco [5-6], and especially the extensive bibliographies of

'"".' (1] and [3]• These papers were motivated in part by earlier work of Gordon

[7 which is mainly for n = 2. Our own study of singular Hamiltonian systems

was a consequence of our interest in (5]; we only learned later of [1-4].

The major focus of this paper is with singular potentials for which S

is a single point which is taken to be the origin. Slight modifications of

our methods permit us to treat more general compact sets S. To describe our

results assume V satisfies:

' : (VI) V g Cl(Rn\{0}, R), n > 3
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(V2 ) V(q) < 0 and V(q), V'(q) + 0 uniformly as lqf +

(V3 ) -V(q) + as q + 0

(V 4) There is a neighborhood W, of 0 in Rn  and a function

U C CI(W\[O}, R) such that U(q) + w as q + 0 and -V(q) > IU'(q)1 2

for q c W\[0}

(V5) K = {V(q) I V'(q) = 0} is bounded.

Hypothesis (V4 ) governs the rate at which -V(q) + c as q + 0. It was

introduced by Gordon who called it the strong force condition. If e.g.

V(q) =-Iql-  for q near 0, (V4 ) is satisfied if 8 > 2. Thus the

Coulomb potential with 8 = 2 satisfies (V4 ) but the gravitational potential

with 8 = 1 is excluded.

We have two types of results for (HS). First in §1 under hypotheses like

(Vi) - (V4 ), the existence of T periodic solutions of (HS) for any T > 0

will be established. Other authors [1-3], [5-6] have obtained similar

results. Like them, we will use the calculus of variations to obtain

*- solutions of (HS) as critical points of the corresponding functional

(0.1I) I(q) 0 lq2  V(q)•dt

The main novelty in our treatment of I is our rather geometrical minimax

characterization of a corresponding critical value, c. This approach leads

* to an estimate in §2 relating c and T of the form

(0.2) T 4 cV(2(2Tc)'/2

where
* -1

.(r) = max - (V(q))

0<IqlI

Inequality (0.2) leads to multiplicity results for (HS) like:

%. -2-
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Theorem 0.3: If V satisfies (Vj) - (V5 ), then for any T > 0, (HS)

possesses infinitely many distinct nonconstant T-periodic solutions.

- Our second type of result for (HS) is also based on inequality (0.2) and

involves removing the condition (V4 ). One of the consequences of (V4 ) is that

if q C W1'2 and V satisfies (V) , (V3 ) - (V4 ) then q(t) # 0 for all

t c [0,T]. However if (V4 ) is eliminated, it is possible that a W1, 2

solution q of (HS) can vanish somewhere, i.e. enter the singularity of V.

Such "collision" orbits cannot be classical solutions of (HS). Thus a broader

notion of solution is needed. See also (8] in this regard. In §3 a notion of

" generalized T-periodic solutions of (HS) will be introduced. With the aid of
Jthe existence results of §1 - 2, and an approximation argument, it will be

shown that (HS) possesses multiple generalized T-periodic solutions. E.g. we

have

Theorem 0.4: If V satisfies (VII - (V3), then for each T > 0, (HS) has

infinitely many distinct generalized T-periodic solutions

|§1 A minimax method to solve (HS)

In order to establish the existence of periodic solutions of (HS) via a

minimax argument, a few preliminaries are required. Let CT(,) denote the

Banach space of T-periodic functions on R with values in R1  under the

usual L norm. Let ET W ' 2 (Rl n ) denote the space of T-periodic

TTRn

functions on R with values in n under the norm

IqI = I l2dt + (q]2)/

where

Hi, ~[q] = 0q(t)dt•

When there is no ambiquity, the subscript T will be omitted. Note that

'a - . -3-
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ET C CT(R, Rn). Let

A = qc E T I q(t) y' 0 for all t C (0,T]}

i.e. A is the subset of E of loops which avoid the origin. Clearly A is

an open subset of E. Standard results and the definition of A imply that

! if

v1.1) I(q) = o[_ Il - V(q)]dt

then I c C (A,R) and any critical point of I on A is a classical

solution of (HS) [9]. The family of constant loops, Rn\{0} lies in A and

will be denoted by A.

Critical points of I will be obtained by minimaxing I over certain

surfaces that will be introduced next. Let D denote the unit ball in Rn.

For n > 3, let

r = {h C(Dn - 2 , A)Ihs constant}
Sn-3

while for n= 3

r = {h c C([-1,1], A) Ih(1) and h(-1) c A .

Identifying 0 and T, and the interval (0,T] with SI, associated with

'p*n-2 1 n-ieach ii c r is a map h c C(D x S S defined by

-- (xt) = h(x)(t)

7h(x)(t)I

For n > 3, this map is constant on S x S , the boundary of Dn 2  S

O Therefore h can be considered to be a map from Sn - 2 x Sl into Sn - 1 . As

such it has a degree which will be denoted by deg i. The situation is a bitI- ".different for n = 3. Then

h (-1,1] x S 1 + S 2

with (I,t) -(1,T) and i(-1,t) - (-I,T). Collapsing [-I} x S1  to a

-4-
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point and {1} x S1 to may be viewed as a map of S2  into S2

and therefore has a degree, deg I.

Let

r" h r deg 0} •

Lemma 1.2: r*

Proof: This is obvious if n = 3. If n >) 3, more care is needed. The

set ×n2 X S1 can be parametrized by (xelt) where x c R-1 with 1xJ 2 =

x2 +..+ n-i 1 and t E 21j. Define a map g : n2x S + Sn-i as

follows:

g(x,elt = (x V1- 4t9 , , tE[ 2 2

2

Then CS n -2  S os t calculate sit) tere chos eua on

of g, e.g. (-1,0,...,0). The inverse image of this point is

(-1,0,...,0) X {1} C Sn - 1 x S1 .  Therefore deg g 1 or -1 depending on

the orientation chosen for n - xS I ad n - . It is then easy to see that

there exists h c r such that g = . Therefore r* ,.

Now a minimax value of I can be defined as

(1.3) c inf max I(h(x))

hcr xcD n-2

We will show that under appropriate conditions on V, c is a positive

critical value of I. A few technical points are required to do this. First:

Proposition 1.4: If V satisfies (V1 ) - (V2 ) and

(V6) There is an a > 0 such that

-5-
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Slim inf -V(q) > a
q+O

then c > 0.

Proof: If not, there is a sequence (hm) C r such that I(hm(x)) * 0 as

-. - m + W for all x E Dn - 2 . By (1.1) and (V2 ), as m +

(1.5) Id h (x)I1 + 0
dt m 2m L 2

Since for all q E E,

(1.6) Iq- [qil T ? / 2  2
T Lq1

(1.5) shows that

I{'" '.-(1.7) 1hm(x) - [hm(W 1]1 + 0

in% L

as m + c. By (V2 ) and (1.1) again,

(1.8) T V(hm(x)(t))dt + 0

as m + w. Consequently by (1.7), (V2 ), and (V6 ), [hm(x)] + . It follows

N .that for large m, hm(.) is homotopic in r to [hm(o)]. Therefore for

n > 3 and large m, h is homotopic to a map C c C(Sn - 2 x S1, Sn-1):

[h (x)]
(1.9) q(x,t) =

while for n 3, c E C(S2 ,S2) and is defined as in (1.9). For n > 3,

factors through the projection map Sn-2 x S 1  n-2 since it is independent

of t. Therefore deg 9 = 0. Simtilarly if n 3, 9 factors through the

map (x,t) + t and deg c = 0. Thus in both cases for large m, hm r ,a

S. -
contradiction. Hence c > 0.

Remark 1.10: Suppose S D Rn  is compact with 0 c S and (V1 ) is replaced by

(V) V E C1(Rn\S, R), n ) 3
%-."

up -6-
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Let

AS = {q c E q(t) I S for all t c [0,T]}

the set of loops in E which avoid S and let

Finally set

S = [h c C(D n-2,As )jhj sn- 3  constant}

Then the proof of Lemma 1.4 yields: If V satisfies (Vi), (V2), and

(V) lim inf - V(q) > a > 0

-q+S

then c > 0.

Next it will be shown that I satisfies the (PS)+ condition on A, i.e.

0-
(PS +: For any s > 0, if (qm) C A, I(qm) + s and I'(qm) + 0, then

' ~qm possesses a subsequence converging to some q E A.
*J..

Note that by taking a sequence qm c A with qm + -, I(qm) + 0. Thus I

does not satisfy (PS) at level 0 and does not attain its infimum. Indeed this

is one of the difficulties in treating I variationally. Our argument is a

variant of that of Greco [5]. It is easy to check that:

4.

Lemma 1.11: Let V satisfy (V,), (V3 ) - (V4). If (qm) C A and qm

converges weakly in E and strongly in Le to q c DA, then

- V(q (t))dt +

-.' (and therefore I(qm) +)

5. Proof: See (5, Lemma 2.1].

Proposition 1.12: If V satisfies (V1 ) - (V4 ), I satisfies (PS)+ on A.

Proof: Let s > 0 and (qm) C A with I(qm) + s and I' (qm) + 0. By

(a) is bounded in L2. We claim ((qm ] ) is also bounded in RP and

-7-
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therefore (qm) 4s bounded in E. If not, I[qm] I along a sub-

sequence. Hence by (1.6) and (V2 ),

(1.13) fT V(qm,(t))dt + 0

and

(1.14) fT V'(qm) (q, - [3m])dt + 0

as m . Therefore by (1.13) - (1.14),

.I(qm) = [I'(q)(q- qm ] ) + _ f V(qm) * (qm [qm ] )dt
Inq m (m - i 2n

(1.15)

- V(qm(t))dt + 00e

But I(qm) + s, strictly positive, a contradiction. Now the boundedness of

qm in E and standard embedding theorems imply along a subsequence qm

converges weakly in E and strongly in LO to q c E. Since I(qm ) + s,

*.. Lemma 1.11 shows q c A. Hence the form of I' shows qm + q in E.

Remark 1.16: In the spirit of Remark 1.10, if (Vl) is replaced by (VI) and

(V3 ) - (V4 ) by

(Vi) lim - V(q)
q+S

(V4) There is a neighborhood W of S in e and U c CI(W\S, R) such

that U(q) + - as q + S and -V(q) > fU'(q)1 2 for q c W\S,

then the above !roof shows (PS)+ holds for As.

The next step in showing that c as given by (1.3) is a critical value

of I is a version of a standard "Deformation Theorem" that is appropriate

for our setting. For a c R+ , let A. = {q c A I I(q) 4 a} and K(,

{q c A I I(q) = a and I'(q) = 0.

Proposition 1.17: Let V satisfy (V) - (V4 ). Suppose s is not a critical

value of I. Then for all C > 0 there is an e > 0 and r C([0,1] x A, A)

such that

-8- "
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1' ri(1,q) = q if I(q) / (s-e, s+E)

20 I(n(s,q)) 4 I(q) for s ) 0

4 ° n(1,-) : A < A

50 (l,.) : * + r*

Proof: The proof of a "standard" version of the Deformation Theorem can be

found in [9, Appendix A]. We will only indicate the minor modifications in

its proof needed to handle the differences in structure encountered here. The

map n is a solution of a differential equation of the form

(1.18) d--= (n)T() , n(0,q) = q

dt

where 0 < w 4 1 is a cut-off function and T is a pseudogradient vector

field for I'. The choice of w guarantees that 10 holds and the choice of

*' ' gives 20. Since I(q) + as q + 3A, 2* and Lemma 1.11 show that

Ti E C([0,1] x A, A).

Property 30 follows as in [9]. Note that I is invariant under a

natural S1  symmetry, namely

- (1.19) I(q(t+e)) = I(q(t))

for all 6 c R/[0,T]. Hence w can be chosen so that it is also invariant

under the S action and ' so that it is equivariant with respect to this

action. The fixed point set of the action in A is X. Hence

I*
n(t,) and n(t,.) is also S. equivariant. Finally if h c r*

hs = n(s,h) c r via 40 and the associated map h from S2 + S2 if n 3

Sn-2 x 1 t n-1'

ss
"/or from Sn - x S I to Sn -  for n > 3 is clearly homotopic to h.

• ""Therefore deg h = deg M 0 and 50 holds.

Theorem 1.20: If V satisfies (V) - (V4 ), then for each T > 0, I has a

critical value c given by (1.3) with a corresponding critical point q c A

-9-



which is a classical solution of (HS).

Proof: Since (V3) holds, c > 0 via Pronosition 1.4. Using 30 and 40 in a

standard way - see e.g. [9] - shows that c is a critical value of I in

A. Lastly a simple regularity argument shows q is a classical solution of

(HS).

Remark 1.21: If V satisfies (V 1 ), (V2 ) (Vi) and (VA), Remark 1.10 and

1.16 and a slightly modified proof of Theorem 1.20 shows the conclusions of

Theorem 1.20 also hold for this setting. See also [I].

Remark 1.22: Since Theorem 1.20 holds for all T > 0, if (HS) has no

equilibrium solutions, a sequence of T periodic solutions of (HS), (distinct

in ET) ' can be constructed as follows: For each k c N, let qk(t) be a

solution of (HS) of period T/k given by Theorem 1.20. Say q 1 (t) has

minimal period T/k . Then for k > k1 , qk(t) is distinct from q1 (t).

Similar reasoning shows that infinitely many of the functions qk(t) are

distinct. However if (HS) has equilibrit solutions, a more careful argument

is needed to get multiple solutions and thus will be carried out in §2.

§2. A lower bound for c and its consequences

In this section, the lower bound (0.2) for c will be derived and it

will be used to get better existence and multiplicity results for (HS) than in

Proposition 2.1: Let V satisfy (V1 ) - (V3 ) and let c be as in (1.3). If

S..

% 9(0) = 0 and for r > 0,

(2.2) y(r) = max - (V(q))

then

-10-
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(2.3) T < cg(2(2Tc)1/2

Proof: (V1 ) - (V3) imply that 9 is a continuous monotone nondecreasing

function with 9(r) + - as r + -. For 0 > 0, set

(2.4) pe(r) = er + 9(r)

Then has the same properties as 9 and is strictly monotone increasing.

- Let q e A. It can be written as

(2.5) q(t) + Q(t)

where = [q] and Q is orthogonal in E to Rn C E. Suppose

(2.6) I(q) < b

Then (1.1), (1.6), and (2.6) imply

(2.7) 1Q1 < (2bT)/2

L

Now by (V2 ), (1.1), and (2.4),

- ) 2dt < (f - V(q)dt)0 (f~q- (Vtq
(2.8)

),/ T,

Substituting (2.5) into (2.8) and using (2.7) and the monotonicity of

then shows

(2.9) T2/b < T %(1r1 + HQO) e T q(1) 1 + (2bT)/2)

-•Consequently

(2.10) 1T/b) - (2bT) 1/ 2 < I

* Let s c (0,11. Then by (2.10) and (2.7),

(2.11) It + sQ(t)l > W - sIQ > P- 1(T/b) - 2(2bT) 2
Lca

Suppose that

(2.12) 1 (T/b) - 2(2bT)2 > 0

Then (2.11) - (2.12) show those q c A satisfying (2.6) are homotopic in A

to their mean values. If (2.12) held for b - c+c for some £ > 0, then

-11-
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,m .

there would be an h E r such that h(x) satisfies (2.6) for all x E Dn 2

Consequently the rIap h(x) would be homotopic to its mean value for all

x C Dn- 2 and therefore deg h = 0, contrary to h c r . Hence (2.12) cannot

hold for b = c+E. Since this is the case for all c > 0, it follows that

(2.13) T 4 9,(2(2cT)'/2

and letting e + 0 yields (2.3).

Pemark 2.14: (i) Suppose that V also depends on t in a T-periodic

fashion. Then the above argument goes through virtually unchanged to yield

(2.3) for this case.

(ii) Suppose that (Vj) and (V3 ) are replaced by (V) and (Vi) (with 0 S)

--. , and the definition of 9 is replaced by q(0) = 0 and for r > 0,

.(r) sup - (V(q))

lqlr,q/S

If further A and 1' are replaced by A. and rS, it is easy to see that

the argument of Proposition 2.1 carries over unchanged yielding (2.3) for this

' - situation.

Two kinds of applications of (2.3) will be given. The first is to forced

versions of (HS):

(2.15) q + V (t,q) = 0
q

0 For this setting we interpret (V1 ) - (V4 ) to mean the natural extension of

these hypotheses to reflect the further dependence of V on t in a T-

periodic fashion.

Theorem 2.16: Suppose V is T-periodic in t and satisfies (V) - (V4 ).

Then (2.15) possesses a T-periodic solution.

Proof: Let c be defined as in (1.3). By Femark 2.14(i), the estimate (2.3)

holds. If c I is defined as a minimax of I over a subclass of r*, then

p -12-
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C c. Let

r {h r ' I(h(+l))< C
2

if n = 3 or

A {h c I I(h(x)) < i for X

- if n > 3. Proposition 1.17 no longer holds in its entirety since V depends

on t so I is no longer S invariant. However the proof holds up to

C
(1.19). Since c1 ) c > 2, choosing e = c/3, by 10 of Proposition 1.17, it

follows that n(1,-) :r + r. Hence the reasoning of the proof of Theorem

1.20 shows c1 is a critical value of I and the corresponding critical

point is a solution of (2.15).

Combining the proof of Theorem 2.16 with Remarks 1.10, 1.16, and 2. 14(ii)

immediately gives:

Theorem 2.17: If V is T-periodic in t and satisfies (Vi), (V2 ), (Vi) -

(V4), then (2.15) possesses a T-periodic solution.

As a second application of (2.3), some multiplicity results will be

obtained in the setting of Theorem 1.20.

Theorem 2.18: If V satisfies (V1 ) - (V4 ), I possesses an unbounded

sequence of critical values.

J.

Proof: For each k c W, Theorem 1.20 can be applied with T replaced by

TA to the functional

(2.19) 1 (q) = fo Iqj2 - V(q)]dt

: 1 , 2obtaining a critical value bk and critical point qk 1T/k 0 A. By (2.3),

(2.20) T/k 4 bk 9 (2(2Tk- b)1/2

If k bk is bounded along some subsequence, (2.20) shows

(2.21) T 0 0

I-13-
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which is impossible. Hence k bk + as k + w. Considering qk as an
element of W ,2 , we have

(2.22) Ck - I(qk) = k bk +

as k + - and the Theorem follows.

Corollary 2.23: Under the hypotheses of Theorem 2.18, if further (V5 ) holds,

(HS) possesses infinitely many distinct nonconstant T-periodic solutions.

Proof: Note that for q K, I(q) = -TV(q). By (V5 ), I is bounded on K.

Hence the result follows.

Corollary 2.24: Along a subsequence of k + -, either

(2.25) min Iqk(t)j + 0
tc O,T]

or

(2.26) lqk I L +

Proof: By (2.22), I(qk) + as k + -. The form of I and (Vl)-(V4 )

imply either (2.24) holds or

(2.27) kl1 2  +

along some subsequence of k + m. (HS) implies

* (2.28) 2 = T. V,(q) q qdt

so if neither (2.25) nor (2.26) were valid, by (2.28) and (Vl)-(V4 ), qk

would be bounded in L2 , contrary to (2.27).
S.,

Femark 2.29: Corollary 2.24 implies infinitely many of the loops qk(t) are

geometrically distinct.

-14-
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Once again by applying the reasoning of Theorem 2.18 together with

Remarks 1.10, 1.16, and (2.14)(ii), we get an analogous result where there is

a more general singular set.

Theorem 2.30: If V satisfies (V') (V2 ), (Vi) - (V4), then for each T > 0,

(HS) possesses infinitely many distinct T-periodic solutions. If further (V5 )

holds, (HS) possesses infinitely many distinct nonconstant solutions.

Remark 2.31: Ambrosetti and Coti-Zelati [, 3] have obtained analogues of

Theorems 2.18 and 2.30 when V depends on t in a T-periodic fashion. Their

arguments are less direct than ours. It is unclear as to whether they extend

to treat cases like those of the next section.

§3. A weak force condition

In this section will show how dropping (V4 ) still leads to the existence

of multiple T-periodic solutions of (HS). As was seen in Lemma 1.11, under

hypothesis (V3 ) - (V4 ), if q C wTI' 2 (R,Rn ) and I(q) < -, then q c A. If

(V3 ) merely holds, this is no longer the case. Functions q c E can be

constructed so that q(0) = 0. Thus critical points of I under (V3 ) may

enter the singularity, i.e. may be "collision orbits". This leads us to the

* following notion of generalized solution of (HS).

I Definition 3.1: A function q e CT(R,Rn) is a generalized T-periodic

solution of (HS) if

(i) q vanishes on a set, D, of measure 0

... (ii) q C T(R\D, W)

(iii) q satisfies (HS) on R\V

(iv) q c ET and I(q) < ,

1 2
(v) - jq(t)f + V(q(t)) E constant for t c R\V.

2
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Note that energy is conserved for (HS) in each component of R\. Condition

(v) in Definition 3.1 further requires that the constant is the same for each

component.

By using an approximation argument based on the results of §1 - 2, we

will show that (HS) possesses multiple generalized T-periodic solutions. More

precisely we have:

Theorem 3.2: Let V satisfy (V1 ) - (V3 ). Then for each T > 0 (HS)

possesses infinitely many distinct generalized T-periodic solutions in ET.

Proof: For each 6 > 0, let V6 (q) be a potential satisfying (VI) - (V4 ),

V = V if ql > 6, and

(3.3) 6 -v

Let k E N and set rT/k[! V 2 q]d
(3.4) Ik, 6(q) --- k[0 j jq - V0(q)]dt

We claim there exist constants ck, ak independent of 6 such that if qk,6

E WT/k n A is the critical point of Ik, obtained via Theorem 2.18, then

( 3.5) 0 < a k I 1,6 (q k ,6 )  k "

Furthermore ak can be chosen so that

(3.6) ak - c as k + co

• To verify these assertions, let

A k = {q c A I q is T/k periodic}

and

n-2
r k = {h C(D ,A k deg 0} •

Choose h1  r V1. Therefore for the associated map ', there is a constant

a > 0 such that

(3.7) mih(t)(t)I a > 0

.D-2 ,tc[O,T]
Define hk by

-16-
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X 'W J

(3.8) hk(x)(t) = h 1 (x)(kt)

Hence hk c rk and by (3.8),

* (3.9) min (x)(t)I > y
n-2

xcD ,tE(0,T/k]

Thus if 6 < a,

(3.10) V6(hk(x)(t)) = V(hk(x)(t))

Therefore for 6 < a,
p..

c k(6) - I1, 6 (qk,6) k inf max I k,(h(x))

ccr xED n-2

(3.11)

" k max I (h (x)) = k max I (h (X)

n-2 k,6 k n 2  k kk

To get the lower bound in (3.5), let 9(0)= 0 and for s > 0,

(3.12) P (s) = max - (V (q))

Then by (3.3),

'.(3.13) 'PS(s) 4 (P(s)

for s ) 0. Now ck( 6 ) = k Ikp(qk,6) - k bk(6) and by (2.3),

T/k < bk (6)%(2(2Tibk( ) )/2

or using (3.13),

-2 '/
(3.14) T Ck(6) (2(2Tk - Ck (6)) 2)

Define

"' kM inf ck(6)
.,-',0<6fao

Passing to a limit in (3.14) shows
!

-2 1/2
(3.15) T 1 Ck 9(2(2Tk a

k •k

Hence the form of 9 shows ck > 0 yielding (3.5). Finally if (ak) were

bounded in k along a subsequence, passing to a limit in (3.15) shows T 4 0

which is imlyissible. Therefore (3.6) holds.

-17-



Now the existence of generalized T-periodic solutions of (HS) can be

establishel. Fixing k and letting 6 0, (3.5) provides upper hounds for

1 2 and -rTV (qk 6 (t))dt. Note that k, [k,6 must be bounded• k,6 2 0 5 ,
L

independently of 6 for otherwise V 6 (qk, 6 (t)) and Vk, 5 (qk, 5 (t) - 0

uniformly for t E [0,T] and then as in (1.13) - (1.15), k ence

. a.{q 6 < u} are bounded in F. Consequently a subsequence of these
a-.,.- { k,5

functions converges weakly in E and strongly in LO to q k E E. Moreover

(3.16) - fT V(q,(t))dt < b

-. Indeed by (3.5), for all 5 < a

- (3.17) - f0 V6 (qk, (t))dt < k .

Let E > 0 and X(s) = 0 if s < c and Xe(s) = 1 if s > E. Then (3.17)

implies

(3.18) - fT xE(jqk 6 (t)J)V 6 (qk 6 (t))dt < B

Since qk,5 + qk in CT(ROn), (3.18) shows

(3.19) - f', x (fqk(t)I)V(qk(t))dt <

Letting e 0 in (3.19) yields (3.17). By (3.17) and (V3 ), the set D

where qk vanishes must have measure 0. Let T E [0,T]\ k. Then there is

- an E, w > 0 such that It-Ti 4 W implies -V(qk(t)) > C. Since qk,6 qk

uniformly in C2 on {It-TI 4 W) (along a subsequence) and qk,S satisfies

* (HS) for V6, it readily follows that qk is a classical solution of (HS) on

" R\Dk. Next observe that (v) of Definition 3.1 holds for qk,6 with D =

Hence by passing to a limit we get it for qk on R\Vk.

*. At this point for each k C N, we have constructed a T/k periodic

solution q of (HS). Note that if q is an equilibrium solution of

(HS), q 0and therefore qk, + q uniformly in C (,n) as 6 0.

Consequently

(3.20) 1 ,(qk,) + I(q) > k

'-s

-18-4



I,

This observation shows that infinitely many of the functions q are

distinct. Indeed if a subsequence of the qk were constant solutions, by

(3.20) and (3.6), I(qk) > a k  as k + - along this subsequence. On the

other hand if there were only finitely many constant solutions, since the

period T/k of qK approaches 0 as k + o, infinitely many of the

(nonconstant) q. must be distinct.

* , Corollarv 3.21: If V satisfies (V1 ) - (V) and (V5 ), then for each T > 0,

(HS) possesses infinitely many distinct nonconstant generalized T-periodic

solutions.

Proof: If not, by Theorem 3.2, q is a constant solution for all k c N

and

(3.22) I(qk) = -TV(qk) > ak

* so I(qk) + as h + by (3.20). But by (V5 ), I is bounded on K, a

contradiction.

Next consider (2.15)

Definition 3.23: A function q E CT(RR m ) is a generalized T-periodic

solution of (2.15) if q satisfies Zi) - (iv) of Definition 3.1.

With this definition of solution and our understanding of the meaning ofI

(V1 ) - (V3) in the time de>)endent case, Theorem 2.16 and the argument of

Theorem 3.2 show that

Theorem 3.24: If V satisfies (V) - (V3 ), then (2.15) possesses a

generalized T-periodic solutions.

Remark 3.25: As in §2, by replacing (Vj) and (V3 ) by (Vj) and (VI), we get

analogues of Theorems 3.2 and 3.24 for this setting.

-19-
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'. Remark 3.26: The definition of a generalized T-periodic solution allows such

a solution to pass through the origin, indeed for possibly infinitely many

values of t c [0,T]. We suspect that this is not possible for a minimax

solution. An i-teresting question to pursue is the regularity of the

solutions our minimax procedure produces. Can such a solution actually be a

collision orbit? Alternatively what further conditions on V guarantee

classical solutions?

i,..-2
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